某空间望远镜相关跟踪系统摆镜随机振动分析

王洪伟^{1,2},阮萍¹,徐广州¹,杨建峰¹

(1 中国科学院西安光学精密机械研究所,西安 710119)(2 中国科学院研究生院,北京 100049)

摘 要:介绍了基础激励下机构随机振动响应的理论与分析方法.利用有限元分析软件 ANSYS 建 立了某空间望远镜相关跟踪系统摆镜的有限元模型,并进行了随机振动响应分析.通过分析考察了 其承受动力学环境的能力.对计算结果进行了分析.指出了现有结构中的薄弱环节,提出了改进方 案,为摆镜的设计提供了重要参考依据.

关键词:随机振动分析;摆镜;有限元

中图分类号: 文献标识码: A 文献标识码: A

0 引言

相关跟踪系统摆镜是空间望远镜中一个高精度 要求的光学装置,为了保证相关跟踪系统的跟踪精 度,实时校正图像相对于参考图像的偏移,实现高精 度观测运动目标,计算表明摆镜精度要达到±1 µrad. 由于摆镜在运输、安装和使用的过程中,会有随机振 动.因此对摆镜提出了振动稳定性的要求.

本文针对空间望远镜相关跟踪系统摆镜振动台 激励下的随机振动试验状况,介绍了基础激励下随 机振动响应的分析方法和技术途径,利用有限元分 析软件 ANSYS 对摆镜的有限元模型进行了模态分 析和随机振动分析.通过有限元计算,研究了空间相 关跟踪系统摆镜经受此动力学环境的能力,找出了 摆镜设计中的薄弱环节.

1 随机振动响应分析的基本原理

随机振动是指不能用确定性函数描述运动规 律,必须用概率、统计方法表述随机过程重要特征的 一种振动^[1].这种振动不可预测,在相同的条件下也 不重复,具有明确的随机性.随机振动分析是一种采 用功率谱密度作为输入的谱分析,是一种确定响应 出现特定值的概率大小的分析方法.

1.1 基础激励随机振动响应

一个与时间无关的随机过程叫做一个平稳随机 过程;若一个平稳随机过程还满足集合平均等于时 间平均,即过程自相关等于时间相关,则这个过程被 称为各态经历的.在工程计算中,物理过程通常均被 假定为线性、平稳、各态经历以及高斯型的^[2].

空间望远镜相关跟踪系统摆镜振动试验中机械

Tel:029-88887671 收稿日期:2008-08-20 **文章编号:**1004-4213(2009)12-3226-4

结构受到的随机振动我们便认为是线性、平稳、各态 历经的随机物理过程.动力学有限元基本方程如下

 $[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = {F(t)}$ (1) 式中,[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度 矩阵; ${u}$ 为位移向量; ${F(t)}$ 为作用力向量;t为时 间.

线性结构系统受到基础随机振动激励后运动方 程(1)便化成为

$$\begin{bmatrix} M_{ff} & [M_{fr}] \\ [M_{rf}] & [M_{r}] \end{bmatrix} \begin{pmatrix} \{\ddot{u}_{f} \} \\ \{\ddot{u}_{r} \} \end{pmatrix} + \begin{bmatrix} C_{ff} & [C_{fr}] \\ [C_{rf}] & [C_{r}] \end{bmatrix} \cdot \\
\begin{bmatrix} \{\dot{u}_{f} \} \\ \{\dot{u}_{r} \} \end{pmatrix} + \begin{bmatrix} K_{ff} & [K_{fr}] \\ [K_{rf}] & [K_{r}] \end{bmatrix} = \begin{pmatrix} \{F\} \\ \{0\} \end{pmatrix}$$
(2)

式中[*M*]、[*C*]、[*K*]表示系统的质量、阻尼和刚度矩阵;*ü*、*u*、*u*表示加速度、速度和位移向量;角标 *f* 代表没被约束的自由度,*r* 代表被约束的自由度;*F* 代表外界的力激励.

自由位移{*u_f*}可以分解为伪静态位移和动态位移两部分

$$\{u_f\} = \{u_s\} + \{u_d\}$$
(3)

其中伪静态位移可由方程(2)消去前面两项, 并用 u_s 代替 u_f 得

 $\{u_s\} = -[K_{ff}]^{-1}[K_{fr}]\{u_r\} = [A]\{u_r\}$ (4)

将方程(2)、(3)代入方程(1)并忽略阻尼的影响,可以得到

$$\begin{bmatrix} M_{ff} \end{bmatrix} \{ \ddot{u}_d \} + \begin{bmatrix} C_{ff} \end{bmatrix} \{ \dot{u}_d \} + \begin{bmatrix} K_{ff} \end{bmatrix} \{ u_d \} \approx$$

$$\{ f \} - (\begin{bmatrix} M_{ff} \end{bmatrix} \begin{bmatrix} A \end{bmatrix} + \begin{bmatrix} M_{fr} \end{bmatrix}) \{ u_r \}$$

$$(5)$$

在基础激励中 F = 0, \ddot{u}_r , \dot{u}_r , u_r 可用基础激励 加速度 \ddot{u}_g , 基础激励速度 \dot{u}_g , 基础激励位移 u_g 代 替,则

 $[M_{ff}]\{u_{d}\} + [C_{ff}]\{u_{d}\} + [K_{ff}]\{u_{d}\} =$ $[M_{ff}][K_{ff}]^{-1}[K_{fr}]\{u_{g}\} - [M_{fr}])\{u_{g}\}$ (6) 等式右侧相当于基础激振力.对上式符号做一 些简化处理,确定性结构在基础激励下的动力学方 程表示为

$$M\ddot{u} + C\dot{u} + Ku = MK^{-1}K_g\ddot{u}_g - M_g\ddot{u}_g$$
(7)

1.2 随机振动响应分析

通过频响应函数计算可以算出随机激励振动的 统计特性,通过频率响应分析得结构的频响函数 $H(\omega)$,然后求出响应的功率谱密度.

对于单点激励,输入的功率谱密度 $S_x(\omega)$ 与输 出的功率谱密度 $S_{v}(\omega)$ 通过响应传递函数 $H(\omega)$ 有 对应关系

$$S_{y}(\omega) = |H(\omega)|^{2} S_{x}(\omega)$$
(8)

若多个激励 $x_1(\omega), x_2(\omega), x_3(\omega)$ …互相独立不 相关,则系统的总响应功率谱密度 $S(\omega)$ 等于各激励 引起的系统响应功率密度谱之和,即

$$S(\boldsymbol{\omega}) = \sum S_{yi}(\boldsymbol{\omega}) = \sum |H_i(\boldsymbol{\omega})|^2 S_{xi}(\boldsymbol{\omega})$$
(9)

相关跟踪系统摆镜的模态分析 2

2.1 摆镜的有限元模型

为了分析能在 ANSYS 中顺利进行,对原有模型 进行了简化[3-4].考虑到模型本身的特点,有限元单元 选用 SOLID45 以及 SOLID95. 为了在求解时降低计 算机 CPU 和内存的开支,本模型采用了映射网格的 划分方法[5-6]. 对镜体进行网格划分后如图 1.

Fig. 1 Finite element model of tip/tilt

由于 SiC 具有质量轻、弹性模量高、热变形系数 小和比刚度高等特点,光学性能也非常出色,能达到 很高的抛光精度. 所以选 SiC 作为镜体材料. 表 1 为 SiC 的材料特性数值.

表1 材料	斗特性
-------	-----

材料	密度 $\rho/(\text{kg} \cdot \text{m}^{-3})$	弹性模量 E/Pa	泊松比ν
SiC	3050	3.02e+011	0.25

2.2 模态分析

模态分析是确定结构振动特性的一种技术,模 态分析理论是基础,是随机振动分析的重要前期过 程.模态求解的方法很多,通常采用 Block Lanczos 法、Subspace 法、Reduced 法、PowerDynamics 法、 Unsymmetric 法、Damped 法以及 QR Damped 法.

由于 Block Lanczos 法精度高,收敛速度快^[7-8].所以 本文选用这种方法,采用一致质量矩阵,设置摆镜的 边界条件,将摆镜接触面和摆动中心进行刚性连接, 然后对刚性节点进行自由度约束,然后进行模态分 析,提取20阶模态,同时扩展20阶模态,计算完成 后列出前5阶结果如表2.

る	2	相天軍	叔 际摆現	楔 念分析	則 五 阶 结 :	米
模态阶数		1	2	3	4	5
频率/Hz	9	289.9	9 291.9	9 972.5	10 888	10 893
考虑	到	篇幅问	题,图:	2 列出前	四阶模	态下的变
形云图.						
NODAL SO	LU	TION				ANSYS
						SEP 5 2008
STEP=1						09:00:32
SUB=1		E		\sim		
FREQ=9290)	T	TA	AN XX		
USUM (A	VG) //		Ky F	2	
RSYS=0			W	JX		
DMX=9.965	5				M	x
SMX=9.965						
_						
0		2.214	4.42	29 6.6	6438	.858
	1.1	07	3.322	5.536	7.751	9.965
			(a)F	irst		
NODAL SO	LU	ΓION				ANSYS
			TIT			SEP 5 2008
STEP=1						09:01:27
SUB=2		L			MX	
FREQ=9292			N.	N XZ		
USUM (A	VG)			KA 2		
RSYS=0			*	YC		
DMX=9.416						
SMX=9.416						
_						_
0	1.4	2.092	$2_{2,120}^{+4.1}$	85 5 221 6.	277	8.37
	1.9	040	3.139	(b)Second	1.525	9.410
NODAL SO	OLU	JTION		(0)=====		ANOVO
						SEP 5 2008
STEP=1			ALL			09:02:20
SUB=3		K				
FREQ=997	3		M			
USUM (A	4VC	(i	$\langle () \rangle$			
RSYS=0				AR		
DMX=7.1				-		
SMX=7.1						
		1 579	2 1	56 17	31 6	312
0.	788	938	2.367	3.945	5.523	7.1
			(c)Tł	nird		

3 相关跟踪系统摆镜的随机振动分析

3.1 随机振动的载荷谱

摆镜受到的随机振动激励为作用于底部三个螺 纹孔位置的加速度激励,加速度激励的功率谱密度谱 如表 3. 计算后的加速度功率谱密度谱曲线如图 3.

表 3 空间相关跟踪系统摆镜随机振动的加速度激励谱

Fig. 3 Curve of acceleration PSD

3.2 相关跟踪系统摆镜结构的随机响应计算

随机振动采用 ANSYS 中的谱分析中的 PSD 分析功能,是一种定性分析,输入输出的数据都只代 表他们在一定特定值时发生的可能性.激励功率谱 密度有位移功率谱密度、速度功率谱密度、加速度功 率谱密度、力功率谱密度等形式.本文以加速度功率 谱密度为激励,输入给定的加速度功率谱.设定系统 的阻尼比是 3%,对摆镜振动中心进行位移约束,并 施加轴向基础激励.

随机振动分析能够得到 1o 位移解、1o 速度解、1o 加速度解以及单元的应力解.经分析求解后轴向随机 振动的 1σ 的等效应力云图如图 4.图 5 是轴向随机振 动的 1σ 的等效应力沿着筋方向从外到内的等效应力 的变化图.径向随机振动的 1σ 的等效应力云图如图 6.

Fig 5 Curse of von mises stress along reinforcing plate diraction NODAL SOLUTION ΛN SEP 5 2008 STEP=3 14:30:39 SUB=1 SEQV (AVG) DMX=0.149E-06 SMN=2703 SMX=0.198E+07 2703 441128 879552 0.132E+07 0.176E+07 221915 660340 0.110E+07 0.154E+07 0.198E+07 图 6 摆镜径向随机振动 1σ等效应力云图 Fig. 6 The 1σ von mises stress in radial direction

4 结果分析

100

图 5

0

200

300

400

等效应力沿筋板方向变化曲线

500

600

从随机振动的分析结果中可以看出,轴向最大 1σ应力为 9.035 6 MP,径向最大 1σ应力为 1.967 7 MP.那么最大 3σ应力为 27.106 8 MP.也 就是说在随机振动中材料所受的最大应力大于 27.106 8 MP的概率为 0.3%.远低于材料的屈服极 限.摆镜所受的最大应力主要集中在筋板和中间圆 环交界处,因为此处产生了应力集中.建议此处增加 倒角.这样既能减少应力集中,又增加了连接强度.

5 结论

通过对某空间望远镜相关跟踪系统摆镜的随机

700

振动分析,说明设计方案可行.并根据分析结果提出 了改进方案.对今后摆镜结构的改进具有重要的指 导意义.由此看出有限元动力学模型建立所提出的 方法对于工程实际中的摆镜随机振动分析具有一定 参考价值,可以使工程设计人员在设计阶段考虑得 更加深入,以期提高摆镜的抗振性能.

参考文献

- NEULANN D E. Introduction of random vibration and spectrum analysis [M]. Beijing; China Meshine Press, 1980.
 D. E. 纽兰. 随机振动与谱分析概论[M]. 北京: 机械工业出版 社, 1980.
- [2] CHENG Wei, HE Tie-ning. New calculation method for calculating structural response to random vibraions[J]. Jouranl of Southwest Jiaotong University, 2002, 34(10):102-104. 成伟,何铁宁.随机振动响应计算在 ANSYS 中的一种实现方 法[J]. 西南交通大学学报, 34(10):102-104.
- [3] HUANG Hong-bin, LI Jing-zhen, SUN Feng-shan, et al. Numerical simulation on static property for rotating tree-faced mirror of ultra-high speed photography[J]. Acta Photonica Sinica, 2007, 36(7):1364-1367. 黄虹宾,李景镇,孙凤山,等. 超高速摄影中三面体转镜力学特

[4] HUANG Hong-bin, CHAI Jin-long, GONG Xiang-dong, et al. Advance deforming mirror faces of rotating mirror for streak camera[J]. Acta Photonica Sinica, 2008, 37(5):1015-1018.

性的计算机仿真[J]. 光子学报,2007,36(7):1364-1367.

黄虹宾,柴金龙,龚向东,等.扫描式超高速摄影中转镜镜面变 形量的几何补偿[J].光子学报,2008,**37**(5):1015-1018.

- [5] WANG Guo-fu, SHANG Xiao-mei, CHEN Bing-yan, et al. Finite element analysis of the main structure for space-borne theodolite[J]. Acta Photonica Sinica, 2008, 37(7):1450-1453.
 王国富,尚小梅,陈丙炎,等. 星载经纬仪主要结构件的有限元 分析[J]. 光子学报, 2008, 37(7):1450-1453.
- [6] CHEN Yong-cong, HU Yong-ming, LI Ying-cai, et al. Displacement analyzing and support position optimizing of the main mirror with backside support[J]. Acta Photonica Sinica, 2007,36(9):1730-1732.
 陈永聪,胡永明,李英才,等.背部支撑主反射镜的而形分析与 支撑点优化[J]. 光子学报,2007,36(9):1730-1732.
- [7] YU Xu-dong, LONG Xing-wu, TANG Jian-xun. Random vibration analysis of mechanically dithered ring laster gyroscope[J]. Optics and Precision Engineering, 2007, 15 (11):1760-1766.
 于旭东,龙兴武,汤建勋. 机械抖动激光陀螺的随机振动响应分

于他东, 龙兴武, 汤廷则. 机做抖动激尤陀螺的随机振动响应分析[J]. 光学精密工程, 2007, **15**(11): 1760-1766.

[8] FENG Bin, ZHOU Yi, ZHANG Jun-wei, et al. Analysis on ground random vibration response of large-scale precision mirror mount[J]. Optics and Precision Engineering, 2007, 15 (3):384-389.

冯斌,周忆,张伟军,等.大型精密镜架地面随机微振动响应分析[J].光学精密工程,2007,**15**(3):384-389.

Random Vibration Analysis of Tip/Tilt Mirror in a Space Telescope Correlation Tracking System

WANG Hong-wei^{1,2}, RUAN Ping¹, XU Guang-zhou¹, YANG Jian-feng¹

(1 Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China)
 (2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The analysis method of structural random vibration response by the base excitation is described. The finite element model of tip/tilt mirror is established and its vibration analysis is performed by the finite element software ANSYS. So that the performance of tip/tilt mirror against the dynamic environment is studied. The results have been analyzed. By analyzing the weakness of the present structure, an anti-vibration suggestion is put forward, which is useful to improve the structure, and reform for the further development of tip/tilt mirror.

Key words: Random vibration analysis; Tip/tilt mirror; Finite element

WANG Hong-wei was born in 1982. He is pursuing the M. S. degree, and his research interests focus on finite element analysis.